MakeItFrom.com
Menu (ESC)

C70260 Copper vs. CR003A Copper

Both C70260 copper and CR003A copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is CR003A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 9.5 to 19
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 520 to 760
230
Tensile Strength: Yield (Proof), MPa 410 to 650
140

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1060
1090
Melting Onset (Solidus), °C 1040
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 160
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
100
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
83
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16 to 24
7.1
Strength to Weight: Bending, points 16 to 21
9.3
Thermal Diffusivity, mm2/s 45
110
Thermal Shock Resistance, points 18 to 27
8.1

Alloy Composition

Antimony (Sb), % 0
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Bismuth (Bi), % 0
0 to 0.00020
Copper (Cu), % 95.8 to 98.8
99.954 to 100
Iron (Fe), % 0
0 to 0.0010
Lead (Pb), % 0
0 to 0.00050
Nickel (Ni), % 1.0 to 3.0
0
Oxygen (O), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0
0 to 0.00020
Silicon (Si), % 0.2 to 0.7
0
Silver (Ag), % 0
0 to 0.0025
Sulfur (S), % 0
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020
Residuals, % 0 to 0.5
0