MakeItFrom.com
Menu (ESC)

C70260 Copper vs. C68000 Brass

Both C70260 copper and C68000 brass are copper alloys. They have 59% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is C68000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 9.5 to 19
27
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 520 to 760
390
Tensile Strength: Yield (Proof), MPa 410 to 650
140

Thermal Properties

Latent Heat of Fusion, J/g 220
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1060
880
Melting Onset (Solidus), °C 1040
870
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 160
96
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 43
48
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
82
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
95
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 16 to 24
14
Strength to Weight: Bending, points 16 to 21
15
Thermal Diffusivity, mm2/s 45
31
Thermal Shock Resistance, points 18 to 27
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Copper (Cu), % 95.8 to 98.8
56 to 60
Iron (Fe), % 0
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0.010 to 0.5
Nickel (Ni), % 1.0 to 3.0
0.2 to 0.8
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.7
0.040 to 0.15
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 0
35.6 to 42.8
Residuals, % 0
0 to 0.5