MakeItFrom.com
Menu (ESC)

C70260 Copper vs. C82700 Copper

Both C70260 copper and C82700 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 9.5 to 19
1.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
46
Tensile Strength: Ultimate (UTS), MPa 520 to 760
1200
Tensile Strength: Yield (Proof), MPa 410 to 650
1020

Thermal Properties

Latent Heat of Fusion, J/g 220
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1060
950
Melting Onset (Solidus), °C 1040
860
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
20
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
21

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 43
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
21
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
4260
Stiffness to Weight: Axial, points 7.3
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 16 to 24
38
Strength to Weight: Bending, points 16 to 21
29
Thermal Diffusivity, mm2/s 45
39
Thermal Shock Resistance, points 18 to 27
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 95.8 to 98.8
94.6 to 96.7
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 1.0 to 3.0
1.0 to 1.5
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.7
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5