MakeItFrom.com
Menu (ESC)

C70260 Copper vs. C87900 Brass

Both C70260 copper and C87900 brass are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.5 to 19
25
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 520 to 760
480
Tensile Strength: Yield (Proof), MPa 410 to 650
240

Thermal Properties

Latent Heat of Fusion, J/g 220
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1060
930
Melting Onset (Solidus), °C 1040
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
15
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 43
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
270
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 16 to 24
17
Strength to Weight: Bending, points 16 to 21
17
Thermal Diffusivity, mm2/s 45
37
Thermal Shock Resistance, points 18 to 27
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 95.8 to 98.8
63 to 69.2
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 1.0 to 3.0
0 to 0.5
Phosphorus (P), % 0 to 0.010
0 to 0.010
Silicon (Si), % 0.2 to 0.7
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
30 to 36
Residuals, % 0 to 0.5
0