MakeItFrom.com
Menu (ESC)

C70260 Copper vs. N08120 Nickel

C70260 copper belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.5 to 19
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
79
Shear Strength, MPa 320 to 450
470
Tensile Strength: Ultimate (UTS), MPa 520 to 760
700
Tensile Strength: Yield (Proof), MPa 410 to 650
310

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
45
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 43
100
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
190
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
240
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 24
24
Strength to Weight: Bending, points 16 to 21
21
Thermal Diffusivity, mm2/s 45
3.0
Thermal Shock Resistance, points 18 to 27
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 95.8 to 98.8
0 to 0.5
Iron (Fe), % 0
21 to 41.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 1.0 to 3.0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Residuals, % 0 to 0.5
0