MakeItFrom.com
Menu (ESC)

C70400 Copper-nickel vs. AWS ERTi-5

C70400 copper-nickel belongs to the copper alloys classification, while AWS ERTi-5 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70400 copper-nickel and the bottom bar is AWS ERTi-5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 300 to 310
900
Tensile Strength: Yield (Proof), MPa 95 to 230
830

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 210
340
Melting Completion (Liquidus), °C 1120
1610
Melting Onset (Solidus), °C 1060
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 64
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 3.0
38
Embodied Energy, MJ/kg 47
610
Embodied Water, L/kg 300
200

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 220
3250
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 9.3 to 9.8
56
Strength to Weight: Bending, points 11 to 12
46
Thermal Diffusivity, mm2/s 18
2.9
Thermal Shock Resistance, points 10 to 11
63

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 89.8 to 93.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 1.3 to 1.7
0 to 0.22
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 4.8 to 6.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.12 to 0.2
Titanium (Ti), % 0
88.2 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0