MakeItFrom.com
Menu (ESC)

C70400 Copper-nickel vs. EN 1.4107 Stainless Steel

C70400 copper-nickel belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C70400 copper-nickel and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 300 to 310
620 to 700
Tensile Strength: Yield (Proof), MPa 95 to 230
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 210
740
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 1060
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 64
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
7.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 47
30
Embodied Water, L/kg 300
100

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 220
420 to 840
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.3 to 9.8
22 to 25
Strength to Weight: Bending, points 11 to 12
21 to 22
Thermal Diffusivity, mm2/s 18
7.2
Thermal Shock Resistance, points 10 to 11
22 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 89.8 to 93.6
0 to 0.3
Iron (Fe), % 1.3 to 1.7
83.8 to 87.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.3 to 0.8
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.8 to 6.2
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0

Comparable Variants