MakeItFrom.com
Menu (ESC)

C70400 Copper-nickel vs. EN 1.4568 Stainless Steel

C70400 copper-nickel belongs to the copper alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C70400 copper-nickel and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 300 to 310
830 to 1620
Tensile Strength: Yield (Proof), MPa 95 to 230
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 210
890
Melting Completion (Liquidus), °C 1120
1420
Melting Onset (Solidus), °C 1060
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 64
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 220
290 to 5710
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.3 to 9.8
30 to 58
Strength to Weight: Bending, points 11 to 12
25 to 40
Thermal Diffusivity, mm2/s 18
4.3
Thermal Shock Resistance, points 10 to 11
23 to 46

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 89.8 to 93.6
0
Iron (Fe), % 1.3 to 1.7
70.9 to 76.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Nickel (Ni), % 4.8 to 6.2
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0