MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. 5154A Aluminum

C70700 copper-nickel belongs to the copper alloys classification, while 5154A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 39
1.1 to 19
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 46
26
Shear Strength, MPa 220
140 to 210
Tensile Strength: Ultimate (UTS), MPa 320
230 to 370
Tensile Strength: Yield (Proof), MPa 110
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 220
190
Melting Completion (Liquidus), °C 1120
650
Melting Onset (Solidus), °C 1060
600
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 59
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
32
Electrical Conductivity: Equal Weight (Specific), % IACS 12
110

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.8
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 51
68 to 760
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 10
24 to 38
Strength to Weight: Bending, points 12
31 to 43
Thermal Diffusivity, mm2/s 17
53
Thermal Shock Resistance, points 12
10 to 16

Alloy Composition

Aluminum (Al), % 0
93.7 to 96.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 88.5 to 90.5
0 to 0.1
Iron (Fe), % 0 to 0.050
0 to 0.5
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 9.5 to 10.5
0
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15