MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. AISI 201L Stainless Steel

C70700 copper-nickel belongs to the copper alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 39
22 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Shear Strength, MPa 220
520 to 660
Tensile Strength: Ultimate (UTS), MPa 320
740 to 1040
Tensile Strength: Yield (Proof), MPa 110
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
880
Melting Completion (Liquidus), °C 1120
1410
Melting Onset (Solidus), °C 1060
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 52
38
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 51
220 to 1570
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
27 to 37
Strength to Weight: Bending, points 12
24 to 30
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 12
16 to 23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
67.9 to 75
Manganese (Mn), % 0 to 0.5
5.5 to 7.5
Nickel (Ni), % 9.5 to 10.5
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0