MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. AISI 304LN Stainless Steel

C70700 copper-nickel belongs to the copper alloys classification, while AISI 304LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is AISI 304LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 39
7.8 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Shear Strength, MPa 220
400 to 680
Tensile Strength: Ultimate (UTS), MPa 320
580 to 1160
Tensile Strength: Yield (Proof), MPa 110
230 to 870

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 1120
1420
Melting Onset (Solidus), °C 1060
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
16
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.1
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
83 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 51
140 to 1900
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
21 to 41
Strength to Weight: Bending, points 12
20 to 31
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 12
13 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
65 to 73.9
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 9.5 to 10.5
8.0 to 12
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0