MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. EN 1.1147 Steel

C70700 copper-nickel belongs to the copper alloys classification, while EN 1.1147 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is EN 1.1147 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
110 to 140
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 39
12 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 220
280
Tensile Strength: Ultimate (UTS), MPa 320
390 to 470
Tensile Strength: Yield (Proof), MPa 110
280 to 370

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 1060
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 59
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
40 to 73
Resilience: Unit (Modulus of Resilience), kJ/m3 51
210 to 370
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10
14 to 17
Strength to Weight: Bending, points 12
15 to 17
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 12
12 to 15

Alloy Composition

Carbon (C), % 0
0.15 to 0.19
Copper (Cu), % 88.5 to 90.5
0 to 0.25
Iron (Fe), % 0 to 0.050
98.3 to 99.25
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Nickel (Ni), % 9.5 to 10.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0