MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. EN 1.6982 Stainless Steel

C70700 copper-nickel belongs to the copper alloys classification, while EN 1.6982 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is EN 1.6982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 39
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 320
800
Tensile Strength: Yield (Proof), MPa 110
570

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
770
Melting Completion (Liquidus), °C 1120
1440
Melting Onset (Solidus), °C 1060
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 59
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
10
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.4
Embodied Energy, MJ/kg 52
33
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 51
820
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
28
Strength to Weight: Bending, points 12
25
Thermal Diffusivity, mm2/s 17
6.6
Thermal Shock Resistance, points 12
29

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
78.7 to 84.5
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 9.5 to 10.5
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0