MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. SAE-AISI 5130 Steel

C70700 copper-nickel belongs to the copper alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
150 to 190
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 39
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 220
310 to 390
Tensile Strength: Ultimate (UTS), MPa 320
500 to 640
Tensile Strength: Yield (Proof), MPa 110
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
420
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 1060
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 59
45
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.2
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 52
19
Embodied Water, L/kg 300
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 51
290 to 750
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10
18 to 23
Strength to Weight: Bending, points 12
18 to 21
Thermal Diffusivity, mm2/s 17
12
Thermal Shock Resistance, points 12
16 to 20

Alloy Composition

Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
97.2 to 98.1
Manganese (Mn), % 0 to 0.5
0.7 to 0.9
Nickel (Ni), % 9.5 to 10.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0