MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. S42035 Stainless Steel

C70700 copper-nickel belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 39
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Shear Strength, MPa 220
390
Tensile Strength: Ultimate (UTS), MPa 320
630
Tensile Strength: Yield (Proof), MPa 110
430

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
810
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 1060
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 59
27
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.4
Embodied Energy, MJ/kg 52
34
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 51
460
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
22
Strength to Weight: Bending, points 12
21
Thermal Diffusivity, mm2/s 17
7.2
Thermal Shock Resistance, points 12
22

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
78.1 to 85
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 9.5 to 10.5
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5
Residuals, % 0 to 0.5
0