MakeItFrom.com
Menu (ESC)

C71500 Copper-nickel vs. EN 1.4466 Stainless Steel

C71500 copper-nickel belongs to the copper alloys classification, while EN 1.4466 stainless steel belongs to the iron alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C71500 copper-nickel and the bottom bar is EN 1.4466 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
80
Tensile Strength: Ultimate (UTS), MPa 380 to 620
640

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1240
1420
Melting Onset (Solidus), °C 1170
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 41
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
5.0
Embodied Energy, MJ/kg 74
70
Embodied Water, L/kg 280
200

Common Calculations

Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 19
22
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 7.7
3.7
Thermal Shock Resistance, points 12 to 20
14

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 63.5 to 70.6
0
Iron (Fe), % 0.4 to 1.0
45.6 to 52.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 29 to 33
21 to 23
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0