MakeItFrom.com
Menu (ESC)

C71500 Copper-nickel vs. EN 1.4971 Stainless Steel

C71500 copper-nickel belongs to the copper alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is C71500 copper-nickel and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
81
Tensile Strength: Ultimate (UTS), MPa 380 to 620
800

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1240
1460
Melting Onset (Solidus), °C 1170
1410
Specific Heat Capacity, J/kg-K 400
450
Thermal Conductivity, W/m-K 28
13
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 41
70
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 5.1
7.6
Embodied Energy, MJ/kg 74
110
Embodied Water, L/kg 280
300

Common Calculations

Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 19
26
Strength to Weight: Bending, points 13 to 18
23
Thermal Diffusivity, mm2/s 7.7
3.4
Thermal Shock Resistance, points 12 to 20
19

Alloy Composition

Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 63.5 to 70.6
0
Iron (Fe), % 0.4 to 1.0
24.3 to 37.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 29 to 33
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0