MakeItFrom.com
Menu (ESC)

C71500 Copper-nickel vs. N10675 Nickel

C71500 copper-nickel belongs to the copper alloys classification, while N10675 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C71500 copper-nickel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
220
Poisson's Ratio 0.33
0.31
Rockwell B Hardness 40 to 89
88
Shear Modulus, GPa 52
85
Tensile Strength: Ultimate (UTS), MPa 380 to 620
860

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 260
910
Melting Completion (Liquidus), °C 1240
1420
Melting Onset (Solidus), °C 1170
1370
Specific Heat Capacity, J/kg-K 400
380
Thermal Conductivity, W/m-K 28
11
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 41
80
Density, g/cm3 8.9
9.3
Embodied Carbon, kg CO2/kg material 5.1
16
Embodied Energy, MJ/kg 74
210
Embodied Water, L/kg 280
280

Common Calculations

Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 12 to 19
26
Strength to Weight: Bending, points 13 to 18
22
Thermal Diffusivity, mm2/s 7.7
3.1
Thermal Shock Resistance, points 12 to 20
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 63.5 to 70.6
0 to 0.2
Iron (Fe), % 0.4 to 1.0
1.0 to 3.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 29 to 33
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.1
Residuals, % 0 to 0.5
0