MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. ACI-ASTM CH20 Steel

C71520 copper-nickel belongs to the copper alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10 to 45
38
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 51
78
Tensile Strength: Ultimate (UTS), MPa 370 to 570
610
Tensile Strength: Yield (Proof), MPa 140 to 430
350

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1170
1410
Melting Onset (Solidus), °C 1120
1430
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 32
14
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 40
20
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
3.7
Embodied Energy, MJ/kg 73
53
Embodied Water, L/kg 280
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
200
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
300
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 18
22
Strength to Weight: Bending, points 13 to 17
21
Thermal Diffusivity, mm2/s 8.9
3.7
Thermal Shock Resistance, points 12 to 19
15

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.2
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
54.7 to 66
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 28 to 33
12 to 15
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0 to 0.020
0 to 0.040
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0