MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. EN 1.4372 Stainless Steel

C71520 copper-nickel belongs to the copper alloys classification, while EN 1.4372 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is EN 1.4372 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10 to 45
47
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
77
Shear Strength, MPa 250 to 340
560
Tensile Strength: Ultimate (UTS), MPa 370 to 570
790
Tensile Strength: Yield (Proof), MPa 140 to 430
350

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 260
880
Melting Completion (Liquidus), °C 1170
1410
Melting Onset (Solidus), °C 1120
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 32
15
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.6
Embodied Energy, MJ/kg 73
38
Embodied Water, L/kg 280
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
310
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
320
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 18
29
Strength to Weight: Bending, points 13 to 17
25
Thermal Diffusivity, mm2/s 8.9
4.0
Thermal Shock Resistance, points 12 to 19
17

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
67.5 to 75
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
5.5 to 7.5
Nickel (Ni), % 28 to 33
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.25
Phosphorus (P), % 0 to 0.2
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0