MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. EN 1.6580 Steel

C71520 copper-nickel belongs to the copper alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10 to 45
11 to 19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
73
Shear Strength, MPa 250 to 340
450 to 700
Tensile Strength: Ultimate (UTS), MPa 370 to 570
720 to 1170
Tensile Strength: Yield (Proof), MPa 140 to 430
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 260
450
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 32
40
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
4.3
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
1.8
Embodied Energy, MJ/kg 73
23
Embodied Water, L/kg 280
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
560 to 2590
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 18
26 to 41
Strength to Weight: Bending, points 13 to 17
23 to 31
Thermal Diffusivity, mm2/s 8.9
11
Thermal Shock Resistance, points 12 to 19
21 to 34

Alloy Composition

Carbon (C), % 0 to 0.050
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
93.7 to 95.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 28 to 33
1.8 to 2.2
Phosphorus (P), % 0 to 0.2
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.035
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0