MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. EN 1.7361 Steel

C71520 copper-nickel belongs to the copper alloys classification, while EN 1.7361 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is EN 1.7361 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10 to 45
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
74
Shear Strength, MPa 250 to 340
600
Tensile Strength: Ultimate (UTS), MPa 370 to 570
1010
Tensile Strength: Yield (Proof), MPa 140 to 430
780

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 260
470
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 32
41
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
3.6
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.0
1.7
Embodied Energy, MJ/kg 73
22
Embodied Water, L/kg 280
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
1590
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 18
36
Strength to Weight: Bending, points 13 to 17
29
Thermal Diffusivity, mm2/s 8.9
11
Thermal Shock Resistance, points 12 to 19
29

Alloy Composition

Carbon (C), % 0 to 0.050
0.28 to 0.35
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
94.1 to 96.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 28 to 33
0 to 0.6
Phosphorus (P), % 0 to 0.2
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.035
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0