MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. EN 1.7703 Steel

C71520 copper-nickel belongs to the copper alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10 to 45
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
74
Shear Strength, MPa 250 to 340
420 to 430
Tensile Strength: Ultimate (UTS), MPa 370 to 570
670 to 690
Tensile Strength: Yield (Proof), MPa 140 to 430
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 260
460
Melting Completion (Liquidus), °C 1170
1470
Melting Onset (Solidus), °C 1120
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 32
39
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 40
4.2
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
2.5
Embodied Energy, MJ/kg 73
35
Embodied Water, L/kg 280
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
570 to 650
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 18
24
Strength to Weight: Bending, points 13 to 17
22
Thermal Diffusivity, mm2/s 8.9
11
Thermal Shock Resistance, points 12 to 19
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.050
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 65 to 71.6
0 to 0.2
Iron (Fe), % 0.4 to 1.0
94.6 to 96.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 28 to 33
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.2
0 to 0.015
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0