MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. EN 2.4816 Nickel

C71520 copper-nickel belongs to the copper alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10 to 45
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
74
Shear Strength, MPa 250 to 340
470
Tensile Strength: Ultimate (UTS), MPa 370 to 570
700
Tensile Strength: Yield (Proof), MPa 140 to 430
270

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 260
1150
Melting Completion (Liquidus), °C 1170
1370
Melting Onset (Solidus), °C 1120
1320
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 32
15
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 5.0
9.0
Embodied Energy, MJ/kg 73
130
Embodied Water, L/kg 280
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
190
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
190
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 18
23
Strength to Weight: Bending, points 13 to 17
21
Thermal Diffusivity, mm2/s 8.9
3.8
Thermal Shock Resistance, points 12 to 19
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0 to 0.050
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 65 to 71.6
0 to 0.5
Iron (Fe), % 0.4 to 1.0
6.0 to 10
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 28 to 33
72 to 80
Phosphorus (P), % 0 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0