MakeItFrom.com
Menu (ESC)

C71520 Copper-nickel vs. S44725 Stainless Steel

C71520 copper-nickel belongs to the copper alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C71520 copper-nickel and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10 to 45
22
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 35 to 86
84
Shear Modulus, GPa 51
81
Shear Strength, MPa 250 to 340
320
Tensile Strength: Ultimate (UTS), MPa 370 to 570
500
Tensile Strength: Yield (Proof), MPa 140 to 430
310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1170
1450
Melting Onset (Solidus), °C 1120
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 32
17
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.8
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 40
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
3.1
Embodied Energy, MJ/kg 73
44
Embodied Water, L/kg 280
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 130
99
Resilience: Unit (Modulus of Resilience), kJ/m3 67 to 680
240
Stiffness to Weight: Axial, points 8.6
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 18
18
Strength to Weight: Bending, points 13 to 17
18
Thermal Diffusivity, mm2/s 8.9
4.6
Thermal Shock Resistance, points 12 to 19
16

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 65 to 71.6
0
Iron (Fe), % 0.4 to 1.0
67.6 to 73.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 28 to 33
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 0.040
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0 to 0.26
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0