MakeItFrom.com
Menu (ESC)

C71580 Copper-nickel vs. EN 1.1133 Steel

C71580 copper-nickel belongs to the copper alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C71580 copper-nickel and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 40
19 to 24
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
73
Shear Strength, MPa 230
370 to 380
Tensile Strength: Ultimate (UTS), MPa 330
580 to 620
Tensile Strength: Yield (Proof), MPa 110
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 260
400
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 39
49
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.5
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 280
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 47
270 to 550
Stiffness to Weight: Axial, points 8.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10
21 to 22
Strength to Weight: Bending, points 12
20 to 21
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 11
18 to 19

Alloy Composition

Carbon (C), % 0 to 0.070
0.17 to 0.23
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 65.5 to 71
0
Iron (Fe), % 0 to 0.5
96.9 to 98.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.3
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 29 to 33
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.5
0