MakeItFrom.com
Menu (ESC)

C71580 Copper-nickel vs. EN 1.4335 Stainless Steel

C71580 copper-nickel belongs to the copper alloys classification, while EN 1.4335 stainless steel belongs to the iron alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C71580 copper-nickel and the bottom bar is EN 1.4335 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
170
Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 40
45
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 51
79
Shear Strength, MPa 230
400
Tensile Strength: Ultimate (UTS), MPa 330
570
Tensile Strength: Yield (Proof), MPa 110
230

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1180
1410
Melting Onset (Solidus), °C 1120
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 39
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 4.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
4.4
Embodied Energy, MJ/kg 74
62
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
210
Resilience: Unit (Modulus of Resilience), kJ/m3 47
130
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
20
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 11
12

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 65.5 to 71
0
Iron (Fe), % 0 to 0.5
49.4 to 56
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 29 to 33
20 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.5
0