MakeItFrom.com
Menu (ESC)

C71640 Copper-nickel vs. N06025 Nickel

C71640 copper-nickel belongs to the copper alloys classification, while N06025 nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C71640 copper-nickel and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
76
Tensile Strength: Ultimate (UTS), MPa 490 to 630
760
Tensile Strength: Yield (Proof), MPa 190 to 460
310

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 260
1000
Melting Completion (Liquidus), °C 1180
1350
Melting Onset (Solidus), °C 1120
1300
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 29
11
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 40
50
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 5.0
8.4
Embodied Energy, MJ/kg 73
120
Embodied Water, L/kg 280
290

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 750
240
Stiffness to Weight: Axial, points 8.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
26
Strength to Weight: Bending, points 16 to 18
22
Thermal Diffusivity, mm2/s 8.2
2.9
Thermal Shock Resistance, points 16 to 21
21

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 61.7 to 67.8
0 to 0.1
Iron (Fe), % 1.7 to 2.3
8.0 to 11
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 1.5 to 2.5
0 to 0.15
Nickel (Ni), % 29 to 32
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 1.0
0.010 to 0.1
Residuals, % 0 to 0.5
0