MakeItFrom.com
Menu (ESC)

C71640 Copper-nickel vs. S44330 Stainless Steel

C71640 copper-nickel belongs to the copper alloys classification, while S44330 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C71640 copper-nickel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 52
78
Tensile Strength: Ultimate (UTS), MPa 490 to 630
440
Tensile Strength: Yield (Proof), MPa 190 to 460
230

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 260
990
Melting Completion (Liquidus), °C 1180
1440
Melting Onset (Solidus), °C 1120
1390
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 29
21
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 40
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.8
Embodied Energy, MJ/kg 73
40
Embodied Water, L/kg 280
140

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 750
140
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
16
Strength to Weight: Bending, points 16 to 18
17
Thermal Diffusivity, mm2/s 8.2
5.7
Thermal Shock Resistance, points 16 to 21
16

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 61.7 to 67.8
0.3 to 0.8
Iron (Fe), % 1.7 to 2.3
72.5 to 79.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 1.5 to 2.5
0 to 1.0
Nickel (Ni), % 29 to 32
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0