MakeItFrom.com
Menu (ESC)

C72150 Copper-nickel vs. EN 1.6771 Steel

C72150 copper-nickel belongs to the copper alloys classification, while EN 1.6771 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72150 copper-nickel and the bottom bar is EN 1.6771 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 99
280 to 350
Elastic (Young's, Tensile) Modulus, GPa 150
190
Elongation at Break, % 29
8.0 to 8.7
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 55
73
Tensile Strength: Ultimate (UTS), MPa 490
930 to 1180
Tensile Strength: Yield (Proof), MPa 210
740 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 600
440
Melting Completion (Liquidus), °C 1210
1460
Melting Onset (Solidus), °C 1250
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 22
46
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 45
5.0
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 6.1
1.9
Embodied Energy, MJ/kg 88
25
Embodied Water, L/kg 270
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
75 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1460 to 3450
Stiffness to Weight: Axial, points 9.1
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
33 to 41
Strength to Weight: Bending, points 15
27 to 31
Thermal Diffusivity, mm2/s 6.0
13
Thermal Shock Resistance, points 18
27 to 35

Alloy Composition

Carbon (C), % 0 to 0.1
0.27 to 0.33
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 52.5 to 57
0
Iron (Fe), % 0 to 0.1
92.2 to 95
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 43 to 46
3.0 to 4.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0