MakeItFrom.com
Menu (ESC)

C72150 Copper-nickel vs. N07716 Nickel

C72150 copper-nickel belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. They have 45% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72150 copper-nickel and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 150
200
Elongation at Break, % 29
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 55
78
Shear Strength, MPa 320
580
Tensile Strength: Ultimate (UTS), MPa 490
860
Tensile Strength: Yield (Proof), MPa 210
350

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 600
980
Melting Completion (Liquidus), °C 1210
1480
Melting Onset (Solidus), °C 1250
1430
Specific Heat Capacity, J/kg-K 410
440
Thermal Conductivity, W/m-K 22
11
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.6
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 45
75
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 6.1
13
Embodied Energy, MJ/kg 88
190
Embodied Water, L/kg 270
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
240
Resilience: Unit (Modulus of Resilience), kJ/m3 150
300
Stiffness to Weight: Axial, points 9.1
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15
28
Strength to Weight: Bending, points 15
24
Thermal Diffusivity, mm2/s 6.0
2.8
Thermal Shock Resistance, points 18
24

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 52.5 to 57
0
Iron (Fe), % 0 to 0.1
0 to 11.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 43 to 46
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0