MakeItFrom.com
Menu (ESC)

C72150 Copper-nickel vs. S13800 Stainless Steel

C72150 copper-nickel belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C72150 copper-nickel and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 99
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 150
200
Elongation at Break, % 29
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 55
77
Shear Strength, MPa 320
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 490
980 to 1730
Tensile Strength: Yield (Proof), MPa 210
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 600
810
Melting Completion (Liquidus), °C 1210
1450
Melting Onset (Solidus), °C 1250
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 22
16
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 45
15
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 6.1
3.4
Embodied Energy, MJ/kg 88
46
Embodied Water, L/kg 270
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1090 to 5490
Stiffness to Weight: Axial, points 9.1
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
35 to 61
Strength to Weight: Bending, points 15
28 to 41
Thermal Diffusivity, mm2/s 6.0
4.3
Thermal Shock Resistance, points 18
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 52.5 to 57
0
Iron (Fe), % 0 to 0.1
73.6 to 77.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 43 to 46
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0