MakeItFrom.com
Menu (ESC)

C72200 Copper-nickel vs. EN 1.4415 Stainless Steel

C72200 copper-nickel belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C72200 copper-nickel and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 48
77
Tensile Strength: Ultimate (UTS), MPa 350 to 580
830 to 930

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 230
790
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 34
19
Thermal Expansion, µm/m-K 16
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
3.6
Embodied Energy, MJ/kg 59
51
Embodied Water, L/kg 300
120

Common Calculations

Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
29 to 33
Strength to Weight: Bending, points 12 to 17
25 to 27
Thermal Diffusivity, mm2/s 9.6
5.1
Thermal Shock Resistance, points 12 to 20
30 to 34

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.3 to 0.7
11.5 to 13.5
Copper (Cu), % 78.1 to 84.2
0
Iron (Fe), % 0.5 to 1.0
75.9 to 82.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 15 to 18
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0

Comparable Variants