MakeItFrom.com
Menu (ESC)

C72200 Copper-nickel vs. S36200 Stainless Steel

C72200 copper-nickel belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C72200 copper-nickel and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 48
76
Tensile Strength: Ultimate (UTS), MPa 350 to 580
1180 to 1410

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 230
820
Melting Completion (Liquidus), °C 1180
1440
Melting Onset (Solidus), °C 1120
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 34
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.8
Embodied Energy, MJ/kg 59
40
Embodied Water, L/kg 300
120

Common Calculations

Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
42 to 50
Strength to Weight: Bending, points 12 to 17
32 to 36
Thermal Diffusivity, mm2/s 9.6
4.3
Thermal Shock Resistance, points 12 to 20
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.3 to 0.7
14 to 14.5
Copper (Cu), % 78.1 to 84.2
0
Iron (Fe), % 0.5 to 1.0
75.4 to 79.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 15 to 18
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0