MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. 7204 Aluminum

C72700 copper-nickel belongs to the copper alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 4.0 to 36
11 to 13
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 310 to 620
130 to 220
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
220 to 380
Tensile Strength: Yield (Proof), MPa 580 to 1060
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1100
640
Melting Onset (Solidus), °C 930
520
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 54
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
39
Electrical Conductivity: Equal Weight (Specific), % IACS 11
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.8
2.9
Embodied Carbon, kg CO2/kg material 4.0
8.4
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 350
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
110 to 710
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 14 to 34
21 to 36
Strength to Weight: Bending, points 15 to 26
28 to 40
Thermal Diffusivity, mm2/s 16
58
Thermal Shock Resistance, points 16 to 38
9.4 to 16

Alloy Composition

Aluminum (Al), % 0
90.5 to 94.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 82.1 to 86
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.35
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
1.0 to 2.0
Manganese (Mn), % 0.050 to 0.3
0.2 to 0.7
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15