MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. ASTM A182 Grade F3V

C72700 copper-nickel belongs to the copper alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 36
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Shear Strength, MPa 310 to 620
410
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
660
Tensile Strength: Yield (Proof), MPa 580 to 1060
470

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
470
Melting Completion (Liquidus), °C 1100
1470
Melting Onset (Solidus), °C 930
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.2
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 4.0
2.3
Embodied Energy, MJ/kg 62
33
Embodied Water, L/kg 350
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
590
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
23
Strength to Weight: Bending, points 15 to 26
21
Thermal Diffusivity, mm2/s 16
10
Thermal Shock Resistance, points 16 to 38
19

Alloy Composition

Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
94.4 to 95.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0