MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. EN 1.0033 Steel

C72700 copper-nickel belongs to the copper alloys classification, while EN 1.0033 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 36
17 to 32
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310 to 620
200
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
300 to 330
Tensile Strength: Yield (Proof), MPa 580 to 1060
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1470
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 4.0
1.4
Embodied Energy, MJ/kg 62
18
Embodied Water, L/kg 350
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
63 to 100
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
10 to 12
Strength to Weight: Bending, points 15 to 26
13 to 14
Thermal Diffusivity, mm2/s 16
14
Thermal Shock Resistance, points 16 to 38
9.4 to 10

Alloy Composition

Carbon (C), % 0
0 to 0.11
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
98.8 to 100
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 0.7
Nickel (Ni), % 8.5 to 9.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0