MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. EN 1.4874 Stainless Steel

C72700 copper-nickel belongs to the copper alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 4.0 to 36
6.7
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
480
Tensile Strength: Yield (Proof), MPa 580 to 1060
360

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 930
1400
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 54
13
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 36
70
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 4.0
7.6
Embodied Energy, MJ/kg 62
110
Embodied Water, L/kg 350
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
29
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
310
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 34
16
Strength to Weight: Bending, points 15 to 26
16
Thermal Diffusivity, mm2/s 16
3.3
Thermal Shock Resistance, points 16 to 38
11

Alloy Composition

Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 82.1 to 86
0
Iron (Fe), % 0 to 0.5
23 to 38.9
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 8.5 to 9.5
18 to 22
Niobium (Nb), % 0 to 0.1
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 6.5
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0