MakeItFrom.com
Menu (ESC)

C72700 Copper-nickel vs. S30600 Stainless Steel

C72700 copper-nickel belongs to the copper alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C72700 copper-nickel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 36
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 310 to 620
430
Tensile Strength: Ultimate (UTS), MPa 460 to 1070
610
Tensile Strength: Yield (Proof), MPa 580 to 1060
270

Thermal Properties

Latent Heat of Fusion, J/g 210
350
Maximum Temperature: Mechanical, °C 200
950
Melting Completion (Liquidus), °C 1100
1380
Melting Onset (Solidus), °C 930
1330
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 54
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 8.8
7.6
Embodied Carbon, kg CO2/kg material 4.0
3.6
Embodied Energy, MJ/kg 62
51
Embodied Water, L/kg 350
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 380
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1420 to 4770
190
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 34
22
Strength to Weight: Bending, points 15 to 26
21
Thermal Diffusivity, mm2/s 16
3.7
Thermal Shock Resistance, points 16 to 38
14

Alloy Composition

Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 82.1 to 86
0 to 0.5
Iron (Fe), % 0 to 0.5
58.9 to 65.3
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 8.5 to 9.5
14 to 15.5
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0