MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. C68300 Brass

Both C72800 copper-nickel and C68300 brass are copper alloys. They have 62% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 3.9 to 23
15
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
40
Shear Strength, MPa 330 to 740
260
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
430
Tensile Strength: Yield (Proof), MPa 250 to 1210
260

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 920
890
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 55
120
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 38
23
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 4.4
2.8
Embodied Energy, MJ/kg 68
46
Embodied Water, L/kg 360
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
56
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
330
Stiffness to Weight: Axial, points 7.4
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 17 to 40
15
Strength to Weight: Bending, points 16 to 30
16
Thermal Diffusivity, mm2/s 17
38
Thermal Shock Resistance, points 19 to 45
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0.3 to 1.0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 78.3 to 82.8
59 to 63
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0 to 0.0050
0 to 0.090
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0
Nickel (Ni), % 9.5 to 10.5
0
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.050
0.3 to 1.0
Sulfur (S), % 0 to 0.0025
0
Tin (Sn), % 7.5 to 8.5
0.050 to 0.2
Titanium (Ti), % 0 to 0.010
0
Zinc (Zn), % 0 to 1.0
34.2 to 40.4
Residuals, % 0
0 to 0.5