MakeItFrom.com
Menu (ESC)

C72800 Copper-nickel vs. N06255 Nickel

C72800 copper-nickel belongs to the copper alloys classification, while N06255 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C72800 copper-nickel and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 3.9 to 23
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
81
Shear Strength, MPa 330 to 740
460
Tensile Strength: Ultimate (UTS), MPa 520 to 1270
660
Tensile Strength: Yield (Proof), MPa 250 to 1210
250

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 38
55
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 4.4
9.4
Embodied Energy, MJ/kg 68
130
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 99
230
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 5650
150
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 17 to 40
22
Strength to Weight: Bending, points 16 to 30
20
Thermal Shock Resistance, points 19 to 45
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Bismuth (Bi), % 0 to 0.0010
0
Boron (B), % 0 to 0.0010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 78.3 to 82.8
0 to 1.2
Iron (Fe), % 0 to 0.5
6.0 to 24
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0.0050 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 9.5 to 10.5
47 to 52
Niobium (Nb), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.0050
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0 to 0.0025
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0 to 0.010
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.3
0