MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. AISI 302 Stainless Steel

C72900 copper-nickel belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 20
4.5 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Shear Strength, MPa 540 to 630
400 to 830
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
580 to 1430
Tensile Strength: Yield (Proof), MPa 700 to 920
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 210
710
Melting Completion (Liquidus), °C 1120
1420
Melting Onset (Solidus), °C 950
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 29
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 39
15
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
3.0
Embodied Energy, MJ/kg 72
42
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
140 to 3070
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27 to 34
21 to 51
Strength to Weight: Bending, points 23 to 27
20 to 36
Thermal Diffusivity, mm2/s 8.6
4.4
Thermal Shock Resistance, points 31 to 38
12 to 31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
67.9 to 75
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Nickel (Ni), % 14.5 to 15.5
8.0 to 10
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0