MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. EN 1.7380 Steel

C72900 copper-nickel belongs to the copper alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 20
19 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
74
Shear Strength, MPa 540 to 630
330 to 350
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
540 to 550
Tensile Strength: Yield (Proof), MPa 700 to 920
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 210
460
Melting Completion (Liquidus), °C 1120
1470
Melting Onset (Solidus), °C 950
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 29
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 39
3.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 4.6
1.8
Embodied Energy, MJ/kg 72
23
Embodied Water, L/kg 360
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
230 to 280
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
19 to 20
Strength to Weight: Bending, points 23 to 27
19
Thermal Diffusivity, mm2/s 8.6
11
Thermal Shock Resistance, points 31 to 38
15 to 16

Alloy Composition

Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 74.1 to 78
0 to 0.3
Iron (Fe), % 0 to 0.5
94.6 to 96.6
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0