MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. EN 2.4879 Cast Nickel

C72900 copper-nickel belongs to the copper alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 20
3.4
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
80
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
490
Tensile Strength: Yield (Proof), MPa 700 to 920
270

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 950
1400
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 29
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 39
55
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 4.6
8.3
Embodied Energy, MJ/kg 72
120
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
14
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
180
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 27 to 34
16
Strength to Weight: Bending, points 23 to 27
16
Thermal Diffusivity, mm2/s 8.6
2.8
Thermal Shock Resistance, points 31 to 38
13

Alloy Composition

Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0
27 to 30
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
9.4 to 20.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 14.5 to 15.5
47 to 50
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0