MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. SAE-AISI 4340 Steel

C72900 copper-nickel belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 20
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 540 to 630
430 to 770
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
690 to 1280
Tensile Strength: Yield (Proof), MPa 700 to 920
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 29
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 39
3.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
1.7
Embodied Energy, MJ/kg 72
22
Embodied Water, L/kg 360
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
590 to 3490
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
24 to 45
Strength to Weight: Bending, points 23 to 27
22 to 33
Thermal Diffusivity, mm2/s 8.6
12
Thermal Shock Resistance, points 31 to 38
20 to 38

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
95.1 to 96.3
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 14.5 to 15.5
1.7 to 2.0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0