MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. N08120 Nickel

C72900 copper-nickel belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 20
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
79
Shear Strength, MPa 540 to 630
470
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
700
Tensile Strength: Yield (Proof), MPa 700 to 920
310

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 1120
1420
Melting Onset (Solidus), °C 950
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 29
11
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 39
45
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 4.6
7.2
Embodied Energy, MJ/kg 72
100
Embodied Water, L/kg 360
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
190
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
240
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
24
Strength to Weight: Bending, points 23 to 27
21
Thermal Diffusivity, mm2/s 8.6
3.0
Thermal Shock Resistance, points 31 to 38
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 74.1 to 78
0 to 0.5
Iron (Fe), % 0 to 0.5
21 to 41.4
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 14.5 to 15.5
35 to 39
Niobium (Nb), % 0 to 0.1
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0