MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. N08801 Stainless Steel

C72900 copper-nickel belongs to the copper alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 20
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
77
Shear Strength, MPa 540 to 630
570
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
860
Tensile Strength: Yield (Proof), MPa 700 to 920
190

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 210
1090
Melting Completion (Liquidus), °C 1120
1390
Melting Onset (Solidus), °C 950
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 29
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 39
30
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 4.6
5.5
Embodied Energy, MJ/kg 72
79
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
220
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
92
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
30
Strength to Weight: Bending, points 23 to 27
25
Thermal Diffusivity, mm2/s 8.6
3.3
Thermal Shock Resistance, points 31 to 38
20

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 74.1 to 78
0 to 0.5
Iron (Fe), % 0 to 0.5
39.5 to 50.3
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Nickel (Ni), % 14.5 to 15.5
30 to 34
Niobium (Nb), % 0 to 0.1
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0.75 to 1.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0