MakeItFrom.com
Menu (ESC)

C73100 Nickel Silver vs. ACI-ASTM CG12 Steel

C73100 nickel silver belongs to the copper alloys classification, while ACI-ASTM CG12 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C73100 nickel silver and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.4 to 8.0
40
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 450 to 640
550
Tensile Strength: Yield (Proof), MPa 420 to 590
220

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1040
Melting Completion (Liquidus), °C 1030
1410
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 35
15
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
18
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.3
Embodied Energy, MJ/kg 49
48
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 35
180
Resilience: Unit (Modulus of Resilience), kJ/m3 790 to 1560
120
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 21
20
Strength to Weight: Bending, points 15 to 20
19
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 15 to 21
12

Alloy Composition

Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 70.8 to 78
0
Iron (Fe), % 0 to 0.1
60.3 to 70
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 4.0 to 6.0
10 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 18 to 22
0
Residuals, % 0 to 0.5
0