MakeItFrom.com
Menu (ESC)

C73100 Nickel Silver vs. EN 1.0108 Steel

C73100 nickel silver belongs to the copper alloys classification, while EN 1.0108 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C73100 nickel silver and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.4 to 8.0
29
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 370
250
Tensile Strength: Ultimate (UTS), MPa 450 to 640
380
Tensile Strength: Yield (Proof), MPa 420 to 590
200

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 35
50
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.1
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 35
94
Resilience: Unit (Modulus of Resilience), kJ/m3 790 to 1560
110
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 21
13
Strength to Weight: Bending, points 15 to 20
15
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 15 to 21
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 70.8 to 78
0 to 0.3
Iron (Fe), % 0 to 0.1
97.5 to 99.98
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 4.0 to 6.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 18 to 22
0
Residuals, % 0 to 0.5
0