MakeItFrom.com
Menu (ESC)

C73100 Nickel Silver vs. SAE-AISI 4023 Steel

C73100 nickel silver belongs to the copper alloys classification, while SAE-AISI 4023 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C73100 nickel silver and the bottom bar is SAE-AISI 4023 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.4 to 8.0
23
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 370
280
Tensile Strength: Ultimate (UTS), MPa 450 to 640
440
Tensile Strength: Yield (Proof), MPa 420 to 590
230

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 35
51
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.1
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 35
86
Resilience: Unit (Modulus of Resilience), kJ/m3 790 to 1560
140
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 21
16
Strength to Weight: Bending, points 15 to 20
16
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 15 to 21
14

Alloy Composition

Carbon (C), % 0
0.2 to 0.25
Copper (Cu), % 70.8 to 78
0
Iron (Fe), % 0 to 0.1
98.1 to 98.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 4.0 to 6.0
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 18 to 22
0
Residuals, % 0 to 0.5
0